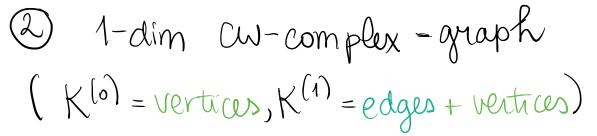
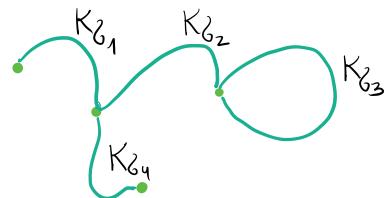
TOPOLOGY ON K

A set Ack is open (or closed) iff $f_{6}^{-1}(A)$ is open (or closed) in Big for every characteristic map f_{6} .

A SUBCOMPLEX of a CW complex X is a subspace ACX which is a union of cells of X such that the closure of each cell in A is contained in A, ie. A is a CW complex. EXAMPLES

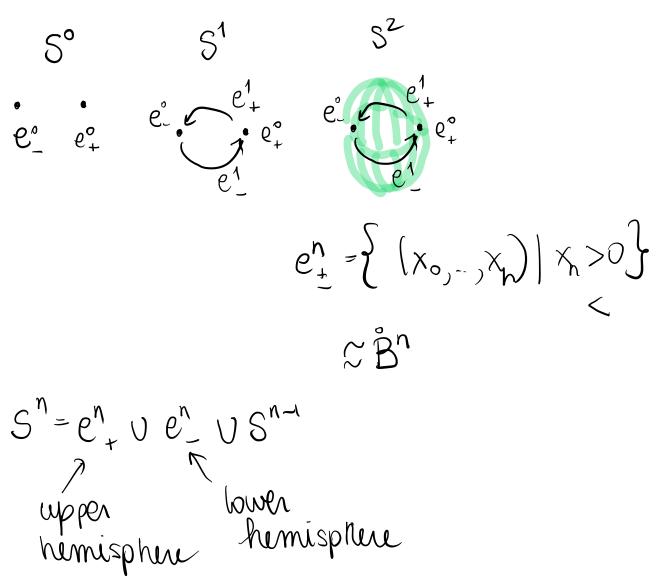
1) O-dim CW-Complex = Space with discrete topology.

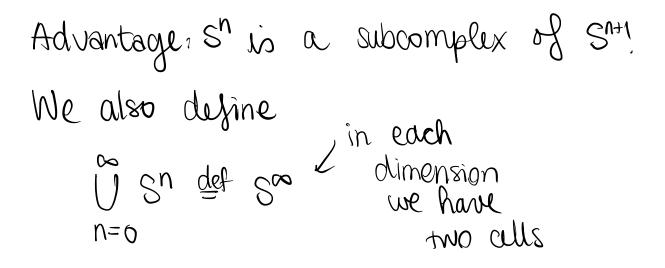




(3) Any simplicial complex is a CW-complex. (4) The sphere S' has the structure of a cell complex with just two cells, C° and e^{N} , the n-cell being attached by the constant map $S^{n-1} \rightarrow e^{\circ}$.

Alternative:





BUILDING SPACES FROM CW-COMPLEXES

() PRODUCT (cells of
$$\mathcal{F}$$

 $(X, \mathcal{E}), (Y, \mathcal{F})$ CW-complexes
 $\uparrow_{\text{cells of } X}$
 $\Rightarrow (X \times Y, \mathcal{E} \times \mathcal{F})$ is also a CW-complex,

where

$$(\mathcal{E} \times \mathcal{F})_n = \{e \times e' \mid e \in \mathcal{E}_k \mid e' \in \mathcal{F}_s, k+s=n\}$$

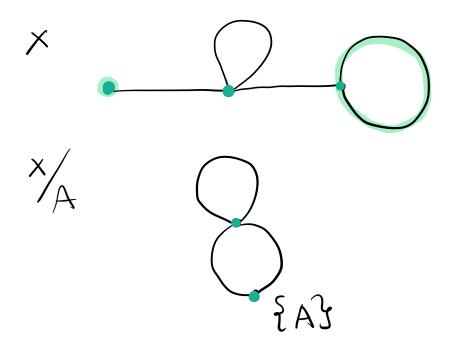
and the characteristic maps

$$f_e: \mathcal{B}^{\mathsf{K}} \to \overline{e}_{\mathsf{C}} \times \mathcal{A} = f_{e'}: \mathcal{B}^{\mathsf{S}} \to \overline{e'}_{\mathsf{C}} \Upsilon$$

induce $f_e \times f_{e'} : B^k \times B^S \to \overline{e \times e'} \subset X \times Y$.

Complication: For completely general CW complexes, X×Y as a cell complex rometimes has finer topology than the product topology, though the two coincide if either X or Y has finitely many cells.

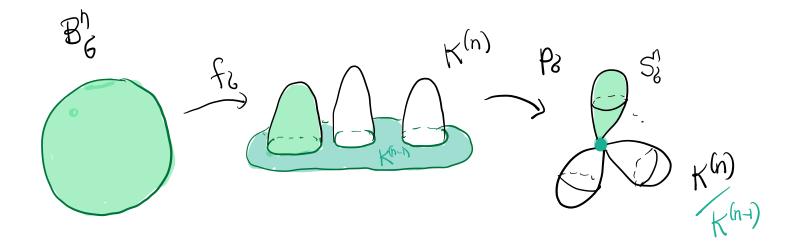
(2) QUOTIENT X a CW-complex & A a subcomplex of A. = X/A has a natural CW decomposition as a CW-complex. the cells of X/A are the cells of X-A plus one new 0-cell, the image of A No X/A The characteristic maps for cells are characteristic maps of alls from E, composed with the guotient map X=X.



Other constructions: suspension, join, wedge sum, smash product (see Hatcher) THEOREM

Let A be a subcomplex of X, U an open neighborhood of A in X. then an open neighborhood V exists, $A \subset V$, $V \subset U$ such that A is a strong deformation retract of V. (Hatcher, A.5. page 523). CELLULAR HOMOLOGY Cellular homology is a very efficient tool for computing the homology groups of CW-complexer, based on degree calculations. Let K be a CW-complex. Consider $K^{(n)}_{K(n-1)}$ (if n=0, we take $K^{(0)}$) (Thus space has a base point that we denote by *. We have $K^{(n)}_{R^{(n-1)}} \approx V S^{n}_{S \in \mathbb{T}_{n}}$ $B_{6}^{n} \xrightarrow{f_{6}} K^{(n)} \xrightarrow{K^{(n)}} K^{(n)} \xrightarrow{P_{6}} S^{n} = S_{6}^{n}$ $K^{(n-1)} \xrightarrow{P_{6}} S^{n} = S_{6}^{n}$ projection to $M_{10} \xrightarrow{P_{6}} M^{n}$ this composition of maps the 2th sphere in the slouds oby to xES" this bouguet composition is injective on Br Visn

BEIn

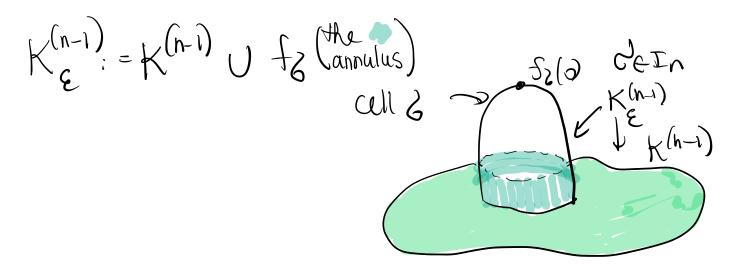


Let $Z^{(n)} := \bigsqcup B_{\theta}^{n}$, and let $f: Z^{(n)} \to K^{(n)}$ be the map coming from all the characteristic maps f_{θ} . We have $f(\partial Z^{(n)}) \subset K^{(n-1)}$ Also, note $H_{n}(Z^{(n)}, \partial Z^{(n)}) \cong \bigoplus H_{n}(B_{\theta}^{n}, \partial B_{\theta}^{n}).$

LEMMA

(1) $\bigoplus_{c \in I_n} (f_c)_* : \bigoplus_{c \in I_n} H_n(B_c, \beta B_c) \rightarrow H_n(\mathcal{K}^{(n)}, \mathcal{K}^{(n-1)})$ is an isomorphism. (3) Check for D. (2) $H_p(\mathcal{K}^{(n)}, \mathcal{K}^{(n-1)}) = 0$ $\forall p \neq n$. (1) + (2) can be rephrased as

 \mathcal{H} $(f_{\mathcal{S}})_{*}$, \mathcal{H} $(B_{\mathcal{S}}^{n}, \partial B_{\mathcal{S}}^{n}) \rightarrow \mathcal{H}_{p}(\mathcal{K}^{(n)}, \mathcal{K}^{(n-1)})$ $\mathcal{S} \in \mathbb{T}_{n}$ to an isomorphism for all P. (because $H_p(B_{\delta}^n, \partial B_{\delta}^n) = 0 \forall p \neq n$.) Proof $H_{p}(\mathbb{Z}^{n},\partial\mathbb{Z}^{n}) \xrightarrow{f_{x}} H_{p}(\mathbb{K}^{(n)},\mathbb{K}^{(n-1)})$ \simeq (nomotopy) invariance + \cong induced by inclusion $H_{\mathcal{P}}\left(\bigsqcup(B_{\mathcal{S}}^{h}, B_{\mathcal{S}}^{n}) \in \mathcal{S}_{\mathcal{S}}^{h}\right)$ $(K^{(n)})$ ~ induced by inclusion t[n-1) Hpl GEIn Bo



 $=7f_{\star}$ is an isomorphism.

LEMMA

The following diagram commutes: H_n (K⁽ⁿ⁾, K⁽ⁿ⁻¹⁾) $\xrightarrow{\partial_{*}}$ $\xrightarrow{H_{n-1}}$ (K⁽ⁿ⁻¹⁾) $\stackrel{\text{der}}{\underset{er_{n}}{(f_{2})_{*}}} 1 \qquad 1_{\stackrel{\text{der}}{\underset{er_{n}}{(f_{2})_{*}}}} 1_{\stackrel{\text{der}}{\underset{er_{n}}{(f_{2})_{*}}} 1_{\stackrel{\text{der}}{\underset{er_{n}}{(f_{2})_{*}}}} 1_{\stackrel{\text{der}}{\underset{er_{n}}{(f_{2})_{*}}}} 1_{\stackrel{\text{der}}{\underset{er_{n}}{(f_{2})_{*}}}} 1_{\stackrel{\text{der}}{\underset{er_{n}}{(f_{2})_{*}}} 1_{\stackrel{\text{der}}{\underset{er_{n}}{(f_{$

Consider the LES of
$$(K^{(n)}, K^{(n-1)})$$
:
 $\Rightarrow H_{p+1}(K^{(n)}, K^{(n-1)}) \xrightarrow{\partial_{x}} H_{p}(K^{(n-1)}) \xrightarrow{\partial_{x}} H_{p}(K^{(n)}) \rightarrow H_{p}(K^{(n)}) + H_{p}(K^{(n)}$